If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x+81=x^2
We move all terms to the left:
24x+81-(x^2)=0
determiningTheFunctionDomain -x^2+24x+81=0
We add all the numbers together, and all the variables
-1x^2+24x+81=0
a = -1; b = 24; c = +81;
Δ = b2-4ac
Δ = 242-4·(-1)·81
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-30}{2*-1}=\frac{-54}{-2} =+27 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+30}{2*-1}=\frac{6}{-2} =-3 $
| 1/8n=11/8 | | 4x-11+5x=18 | | n-74/5=11/5 | | 3x+6x-9=12 | | (16+n)+5=28 | | -35+7x+12=5 | | k-4=-17 | | 8h-3=59 | | (8x+19)°=(9x+9)° | | 19-x=4x | | 4n+3=6n+17 | | 20.3x64.60=2.08x64.10 | | 22x^-1-4x=1 | | -4x+-8=6x+3 | | 4*(2x-1)-3x=5x-4 | | 2(4m-5)=2(2m+1) | | 3(a+1)=a+10 | | -2(3x+3)-15=-5x-10 | | 3(x-0)=0 | | −2(3x+3)−15=−5x−10 | | r4-7=13 | | x4−7=13 | | 18-(n+3)=10 | | m4+10=46 | | 45=15-3x. | | x4+28=−12 | | 6−t=2t | | -6=4(2a+3) | | )16x=2048 | | 10x+15x+30°=180° | | 10x+15x×30°=180° | | 10x+15x×30°=18° |